Least Squares Methods for System Identification of Structured Models
نویسنده
چکیده
The purpose of system identification is to build mathematical models for dynamical systems from experimental data. With the current increase in complexity of engineering systems, an important challenge is to develop accurate and computationally efficient algorithms. For estimation of parametric models, the prediction error method (PEM) is a benchmark in the field. When the noise is Gaussian and a quadratic cost function is used, PEM provides asymptotically efficient estimates if the model orders are correct. A disadvantage with PEM is that, in general, it requires minimizing a non-convex function. Alternative methods are then needed to provide initialization points for the optimization. Two important classes of such methods are subspace and instrumental variables. Other methods, such as Steiglitz-McBride, use iterative least squares to avoid the non-convexity of PEM. This thesis focuses on this class of methods, with the purpose of addressing common limitations in existing algorithms and suggesting more accurate and computationally efficient ones. In particular, the proposed methods first estimate a high order non-parametric model and then reduce this estimate to a model of lower order by iteratively applying least squares. Two methods are proposed. First, the weighted null-space fitting (WNSF) uses iterative weighted least squares to reduce the high order model to a parametric model of interest. Second, the model order reduction Steiglitz-McBride (MORSM) uses pre-filtering and Steiglitz-McBride to estimate a parametric model of the plant. The asymptotic properties of the methods are studied, which show that one iteration provides asymptotically efficient estimates. We also discuss two extensions for this type of methods: transient estimation and estimation of unstable systems. Simulation studies provide promising results regarding accuracy and convergence properties in comparison with PEM.
منابع مشابه
Overview of total least-squares methods
We review the development and extensions of the classical total least squares method and describe algorithms for its generalization to weighted and structured approximation problems. In the generic case, the classical total least squares problem has a unique solution, which is given in analytic form in terms of the singular value decomposition of the data matrix. The weighted and structured tot...
متن کاملSuperlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کاملNonlinearly Structured Low-Rank Approximation
Polynomially structured low-rank approximation problems occur in • algebraic curve fitting, e.g., conic section fitting, • subspace clustering (generalized principal component analysis), and • nonlinear and parameter-varying system identification. The maximum likelihood estimation principle applied to these nonlinear models leads to nonconvex optimization problems and yields inconsistent estima...
متن کاملBlock-Toeplitz/Hankel Structured Total Least Squares
A structured total least squares problem is considered in which the extended data matrix is partitioned into blocks and each of the blocks is block-Toeplitz/Hankel structured, unstructured, or exact. An equivalent optimization problem is derived and its properties are established. The special structure of the equivalent problem enables us to improve the computational efficiency of the numerical...
متن کاملHigh-performance numerical algorithms and software for structured total least squares
We present a software package for structured total least-squares approximation problems. The allowed structures in the data matrix are block-Toeplitz, block-Hankel, unstructured, and exact. Combination of blocks with these structures can be specified. The computational complexity of the algorithms is O(m), where m is the sample size. We show simulation examples with different approximation prob...
متن کاملThe Weighted Null-Space Fitting Method
Abstract—In system identification of structured models, the prediction error method provides asymptotically efficient estimates under mild assumptions, but in general it requires solving a non-convex optimization problem. An alternative class of methods uses a non-parametric model as intermediate step to obtain the model of interest. The weighted null-space fitting (WNSF) method belongs to this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016